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Preprocessing 
Structural and functional MRI pipelines

Simulation 
Whole-brain dynamical modeling

Machine learning 
Cross-validated modeling and confound removal

Brain parcellation 
Schaefer, Desikan-Killiany, etc.

Tractography 
Orientation density and tracking Optimal model 

Grid search, Bayesian, CMAES, etc.

Connectome and network analyses

Neuroimaging analyses Prediction 
From brain to behavior and clinical applications

Multi-modal MRI 
T1-weighted 

Diffusion-weighted 
Resting-state fMRI

Processed (and corrected) functional and structural images

Functional and structural whole-brain connectome

Data workflow (publication w/ step numbers)

Connectome 
Functional and structural connectivity

NIfTI 
Neuroimaging Informatics Technology Initiative

DICOM 
Digital Imaging and Communications in Medicine
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Effective workflow from multi-modal MRI data to 
model-based prediction
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Introduction

Methods: A workflow for model-based machine-learning research using multi-modal MRI data

Results: Simulated features outperforming empirical features in machine-learning analysis 

๏ Comparing structural connectivity (SC) and functional connectivity (FC) led to the structure-function relationship as a possible methodological approach to explore the 
interdependence between structure and function of the human brain. However, this relationship between empirical SC (eSC) and empirical FC (eFC) is relatively low, 
might depend on many factors, and its mechanism is still unclear [1]. 

๏ Integration of model-based approaches into whole-brain connectome research can expand the scope of investigation to understand the brain [2,3]. The models can be 
used to generate simulated FC (sFC) as an additional data modality. Accordingly, it can be suggested as a possible mediator between brain structure and function. 

๏ We suggest a framework that advances the applicability of the model-based approach by applying simulated data to machine-learning analysis.

Prediction scripts

MRI pipeline

Step 1  Multi-modal MRI data 

HCP young adults (n=270, 142 females, 28.5± 3.5 years old) 
• Structural and functional MRI data: T1-weighted MRI, 

Diffusion-weighted MRI, Resting-state functional MRI

Step 2  MRI processing 

• Correction: bias field, head motion, eddy 
• Denoising, tissue segmentation 
• Image registration to MNI space

Step 3  Whole-brain connectome 

• Functional atlas: Schaefer 100 cortical regions 
• Structural atlas: Harvard-Oxford 96 cortical regions 

✓Tracking streamlines           whole-brain tractography

Step 5  Machine learning for model-based prediction 

• Empirical feature: corr(eFC, eSC) and Simulated feature: corr(eFC, sFC) 
• Cross-validated confound removal scheme (5-fold nested cross validation; n=100) 

✓Classification of females and males (confound: brain volume) 
✓Prediction of cognitive composite score and the Big-Five personality traits (confound: 

brain volume and age)

Step 4  Whole-brain dynamical modeling 

• A whole-brain model (coupled phase oscillators with delay) 
• Simulated Blood-Oxygen-Level Dependent signals ([0.01,0.1] Hz) 

✓Correlation between eFC and sFC (goodness-of-fit) 
✓Parameter optimization (Covariance Matrix Adaptation Evolution Strategy) [4,5] 

Low dimensional (2 parameters), High dimensional (around 100 parameters)
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๏ By incorporating model-based features alongside empirical data, we can explore 
brain connectomes and their interrelationships, thereby enhancing performance 
and bringing additional benefits in neuroimaging analysis.


๏ We propose to consider the simulated data as an additional neuroimaging data 
modality that captures distinct properties barely present in empirical data and can 
be integrated into machine-learning applications.
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2. Machine-learning results

3. Feature contribution in machine learning (Shapley additive explanation)

1. Empirical (Emp.) and simulated (Sim.) features
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•Feature distributions across individual subjects for two 
brain parcellations. 

•PC1 and PC2 are related to the simulated features and 
cumulatively explain 90% of the variance of features. 

•PC2 and PC4 distinguish the two parcellation schemes.

•The best predictors in each target 
Sex classification: Sim. (High dim.) 
Cognition: Sim. (Low dim.) 
Agreeableness: Sim. (High dim.) 
Conscientiousness: Sim. (High dim.) 
Extraversion: Sim. (High dim.) 
Neuroticism: Sim. (High dim.) 
Openness: Emp.

*ES (p value) 
1.16 (0.00) 
0.84 (0.00) 
0.76 (0.00) 
0.76 (0.00) 
0.63 (0.00) 

-0.21 (0.00) 
0.46 (0.00) 

*Effect size against the null distribution

•Distributions of Shapley additive explanation* (SHAP) 
values [6] (data points = individual subjects). 

•SHAP value itself does not indicate the magnitude of 
performance. 

•Parcellation schemes can contribute to the prediction 
in different ways.

*A large |SHAP| means a strong contribution.

Goodness-of-fit = 0.614

·φi(t) = 2π fi +
C
N

N

∑
j=1

kijsin (φj(t − τij) − φi(t)) + σ ηi
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